6 Time evolution

6.1 Unitary evolution

The time evolution postulate of quantum mechanics states that, between measurements,
the time evolution of the state vector of a closed quantum system Q is given by a linear
differential equation called the Schrédinger equation: ih2|¢(t)) = H|y(t)). Here, ki is
the reduced Planck constant, we choose our units so that it’s equal to one. H € Herm(Hq)
is the Hamiltonian - the observable corresponding to the total energy of a system. Solving
the Schrédinger equation (for a time independent H) we obtain, for any [i(t1)), |¥(t2)) =
U(At)|1)(t1)) where U(At) := exp(—iHAt) is a unitary operator on Hq, and At := ty — t;.
We won't talk about Hamiltonians again in this course. For us the important point is that the
time evolution of a closed system is unitary and, furthermore, for any unitary transformation
U we can find a Hamiltonian H and time interval At such that U = exp(—iHAt). We will
often imagine that we have sufficient control over systems to cause any unitary time evolution
we like (by intervening to change the Hamiltonian). Sometimes this is not unrealistic: e.g.
one can implement any unitary on a photon’s polarisation (an example of a qubit) by passing
the photon through various optical components.

Given a unitary time evolution U, we know how it acts on density operators corresponding
to pure states of the system: |¢)v| — Ulb)Xtp|UT. Since the time evolved ensemble average
of an ensemble of pure states should be the ensemble average of the time evolved pure state,
density operators evolve according to p + UpUT.

6.2 Operations

It is not hard to come up with some realistic examples of non-unitary evolution.

1. Uncertainty about unitary evolution, e.g. with probability p; unitary U; occurred. p —
> piUipUiT (relevant to modelling noise in quantum computers, for example).

2. A PVM (with more than one possible outcome) is performed on the system (see ex-
ample sheet 1).

3. Adding a system: pq — pq ® or.

4. Isometric evolution: pp — VB<_ApAVAT<_B where V' € L(Ha,Hp) is an isometry, i.e.
V,L_BVBFA = 1a. If or = |o)o|r then adding a system is an example of isometric
evolution with Vorer = > g<icqq 11} @ [0)r(ilq € L(Hq ® Hr, Ha)-

5. The identity operation, id®B X, — 1B<—AXA1L<_B is another simple example of
isometric evolution.

6. Removing a system: pqr — Trrpqr-

7. Compositions of these, e.g. pqr — TrrUrqpq ® URUFEQ.
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These are all examples of operations, that is, linear maps from one space of operators
to another which are completely positive and trace preserving.

Definition 1. A linear map MBA : L(Ha) — L(Hp) is
1. trace preserving (TP) if for all Xp € L(Ha) TrtMBTAX, = TrXp;
2. positive if for all Xa € L(Ha) such that Xa > 0, MBAX A > 0;

dR(—R

3. completely positive (CP) if, for any system R, MB“A @i is positive.

4. An operation (or CPTP map) if it is completely positive and trace preserving.
$d Give an example of a map which is positive but not completely positive.

Proposition 2. If MB<A and N8 are positive then their composition N“BMBA g
positive. If they are CP then their composition is CP. If they are TP then their composition
is TP. Consequently, compositions of operations are operations.

Proposition 3. Given maps M?_A, let MBA =" pi/\/l?‘_A where p; > 0 are real num-
bers. If the M?_A are positive then MB<A is positive. If the M?‘_A are CP then MB“A is
CP.

Proposition 4. Maps of the form MB<A : X) — ZXaZT, where Z € L(Ha, Hg), are CP.

Proof. 1If Xa > 0, then ($|gZXaZT|0)g = (¢/|aXalt)')a > 0 where [¢')a = ZT|h)g for all
4)g, so the map is positive. Since MBA ® id¥ R Xar = (Z ® 1r) Xar(Z ® 1g)' is positive
(by the same reasoning) for any R, MB* is completely positive. m

Proposition 5. The following classes of maps are operations:
1. Adding a system in a fixed state, uncorrelated to the existing system: pq — pq ® or.
2. Isometric evolution: pa — VpaVT, where V € L(Ha, Hg) and VIV = 1,.
3. Removing a system: pqr — Trrpqr-

Proof. That (2) is CP is a special case of Proposition 4. By decomposing o as a convex
combination of pure states we see that (1) can be written as a positive linear combination
of isometries, so complete positivity follows from Props. 4 and 3. Looking at the third char-
acterisation of the partial trace in the previous handout, we see that its complete positivity
also follows from Props. 4 and 3. Adding a system is clearly TP; that isometric evolutions
are TP follows from cyclicity of trace and VTV = 1q. Partial trace is trace preserving simply
because Trq'Trgr = Trqr. O

Definition 6. For any Hilbert space Ha, we define a linear map veca : L(Ha,C) — Ha by
its action on the computational basis:

For a € {0,...,da — 1}, veca : (ala — |a)a.
veca is a bijection, whose inverse is vecy' : a)a — (ala.
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Note that veca(y|a = |¥0)4! If we apply veca to |i)g(j|a € L(Ha, He) = He @ L(Ha,C),
we get vecali)g(j|la = |i)B ® |j)a, and this extends by linearity to an isomorphism between
E(HA, HB) and HB & HA.

Given any two systems A and A’ of equal dimension d let [®F)aa := D ;4 [7)a @ [f)ar

and @5, = [PTN@T|aar, and let [¢7)an = [OF)an/Vd.

Definition 7. Given a linear map MB* : L(Ha) — L(Hp), its operator representation
in L(Ha ® Hg) is defined to be

idAeA’MBeA@XA/ — Z (MBA)E|A)B @ |5)(K|A

0<j,k<dn
where A’ is a system with the same dimension as A (the id*“*" is just for relabelling).

The action of MB<A can be written in terms of its operator representation Mga:

MPAX =MB*A( > |j><j|AXA|k><k1A> (6.1)
0<j,k<da
= > (MEANEIA) g Trli)EaXA = TraMpale ® Xp  (6.2)
0<j,k<da

So, we have an isomorphism between the vector spaces L(L(Ha), L(Hp)) and L(Ha @ Hp)
(sometimes called “Channel-state duality” or the “Choi-Jamiotkowski isomorphism”).

Proposition 8. The map MB<A . X — ZXaZT, where Z € L(Ha,Hp), has the operator
representation |()}(|ga € L(Hg ® Ha) where |()ga = vecaZ.

Proof. I Z' = 3y is 0<a<ay “balb)B(ala, then |()pa = veca(Z) = 37, , 2ba|b)s @ |a)a, and
TrAlO)Cloals ® X3 = Tra [ 00 i [D) |6 @ a¥a' [ X3

= S 20PNV s lalaXala)a = (Sya 2alts(alan) Xa (S sladattls) . O

Proposition 9 (Representations of CP maps.). Let Mga be the operator representation of
a map MB<A The following statements are equivalent:

1. Mga > 0.

2. There is a set of maps {K; € L(Ha,Hg) : j € {1,...,n}} such that
MBAX, =3 | K XAK]

3. There is a system E and map Z € L(Ha, He ® Hg) such that MBAX, = Tre ZXaZT.
4. MB<A is completely positive.

Proof. For (1) = (2), we know that Mga = > [r;)r;|ea for some |r;)pa € Hp @ Ha
(from the eigendecomposition of Mga, for instance). So, using Proposition 8,

MBHAXA = TTAMBA]-B X XE = Z TI"A|I€j><I{j|BAlB & XE = Z }fj)(p‘f(;r
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where K; = vecy'|k;)sa. For (1) == (3), we use that Mgy = Tre|¢)C|esa for some
|O)ega € He ® Hg @ Ha. Again using Proposition 8,

MBAX ) =TraMpale @ Xa = Tra(Tre|¢)(¢lesa)le @ Xa
=TreTral¢)(¢|epales ® Xa = TreZXaZ"
where Z € L(Ha, He ® Hp) = Vecf\llQEBA.
(2) = (4) by Propositions 3 and 4. (3) = (4) follows from the fact that isometries

and partial traces are CP and from the composition of CP maps being CP. That (4) = (1)
is immediate from the definitions of complete positivity and the operator representation. [J

An expression of the form MB“AX, = Zj KjXAKJT is known as a Kraus decompo-
sition, and the K; are called Kraus operators, for M®“". An expression of the form
MBEAX ) = Tre ZXaZ' is known as a Stinespring representation for MB<A,

Proposition 10. Given MB<A: X, — Z?Zl KjXAKJT = TreZXaZ" where K; € L(Ha, Hp)
and Z € L(Ha, Hg ® Hg) then

MB<A i trace preserving <= 2?21 K]TKJ- =1p <= Z is an isometry.
&& Prove this.

Remark 11. [Stinespring representation of an operation] Propositions 9 and 10 tell us that
any operation (CPTP map) MB<A can be written MBAX, = TreV XAV for some isometry
Ve L(Ha, He @ He).

Proposition 12. Any isometric evolution with V' € £(Ha, Hg) can be written
VXAV = TraUag Xa ® [0)0[sU] 5 (6.5)
where Upg is a unitary in L(Ha @ Hpg).

Proof. Since V' is isometry, it can be written V' =3, ; [v;)8(jla where {|v;)p: 0 < j <
da} is an orthonormal set. Therefore, {|0)a ® |v;)g : 0 < j < da} is an orthonormal set in
Ha ® Hg. It is always possible to extend an orthonormal set to an orthonormal basis. Let
B ={|0)a®|v;)p:0<j<da}U{|ugj)ag : 1 <k < dg,0 < j < da} be such an extension,

and let Ung = 3 o< jcq, [00a ® [05)B(i|a ® (Og + 3 o0<jcay 2o1<heds |Wki)aB (| @ (k[g. This
is a unitary operator in L(Ha ® Hg) since it maps the computational basis for Ha ® Hg to
the orthonormal basis B. Because Uag|t))a ® |[0)g = [0)a ® (V[1))a)B,

TraUas )¢ |a ® [0X0sULg = VX |aVT.
The result follows by linearity. O
From the last two results it follows that

Theorem 13. Any operation can be implemented by adding a system in a pure state,
unitary evolution of the composite system, and removing a system.



