6 Time evolution

6.1 Unitary evolution

The time evolution postulate of quantum mechanics states that, between measurements, the time evolution of the state vector of a closed quantum system \mathbf{Q} is given by a linear differential equation called the **Schrödinger equation**: $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle$. Here, \hbar is the reduced Planck constant, we choose our units so that it's equal to one. $H \in \text{Herm}(\mathcal{H}_{\mathbf{Q}})$ is the Hamiltonian - the observable corresponding to the total energy of a system. Solving the Schrödinger equation (for a time independent H) we obtain, for any $|\psi(t_1)\rangle$, $|\psi(t_2)\rangle =$ $U(\Delta t)|\psi(t_1)\rangle$ where $U(\Delta t) := \exp(-iH\Delta t)$ is a unitary operator on $\mathcal{H}_{\mathbf{Q}}$, and $\Delta t := t_2 - t_1$. We won't talk about Hamiltonians again in this course. For us the important point is that the time evolution of a closed system is unitary and, furthermore, for any unitary transformation U we can find a Hamiltonian H and time interval Δt such that $U = \exp(-iH\Delta t)$. We will often imagine that we have sufficient control over systems to cause any unitary time evolution we like (by intervening to change the Hamiltonian). Sometimes this is not unrealistic: e.g. one can implement any unitary on a photon's polarisation (an example of a qubit) by passing the photon through various optical components.

Given a unitary time evolution U, we know how it acts on density operators corresponding to pure states of the system: $|\psi\rangle\langle\psi|\mapsto U|\psi\rangle\langle\psi|U^{\dagger}$. Since the time evolved ensemble average of an ensemble of pure states should be the ensemble average of the time evolved pure state, density operators evolve according to $\rho \mapsto U\rho U^{\dagger}$.

6.2 Operations

It is not hard to come up with some realistic examples of non-unitary evolution.

- 1. Uncertainty about unitary evolution, e.g. with probability p_i unitary U_i occurred. $\rho \mapsto \sum_i p_i U_i \rho U_i^{\dagger}$ (relevant to modelling *noise* in quantum computers, for example).
- 2. A PVM (with more than one possible outcome) is performed on the system (see example sheet 1).
- 3. Adding a system: $\rho_{\mathsf{Q}} \mapsto \rho_{\mathsf{Q}} \otimes \sigma_{\mathsf{R}}$.
- 4. Isometric evolution: $\rho_{\mathsf{A}} \mapsto V_{\mathsf{B}\leftarrow\mathsf{A}}\rho_{\mathsf{A}}V_{\mathsf{A}\leftarrow\mathsf{B}}^{\dagger}$ where $V \in \mathcal{L}(\mathcal{H}_{\mathsf{A}},\mathcal{H}_{\mathsf{B}})$ is an isometry, i.e. $V_{\mathsf{A}\leftarrow\mathsf{B}}^{\dagger}V_{\mathsf{B}\leftarrow\mathsf{A}} = \mathbb{1}_{\mathsf{A}}$. If $\sigma_{\mathsf{R}} = |\sigma\rangle\langle\sigma|_{\mathsf{R}}$ then adding a system is an example of isometric evolution with $V_{\mathsf{Q}\mathsf{R}\leftarrow\mathsf{R}} = \sum_{0 \leq i < d_{\mathsf{Q}}} |i\rangle_{\mathsf{Q}} \otimes |\sigma\rangle_{\mathsf{R}}\langle i|_{\mathsf{Q}} \in \mathcal{L}(\mathcal{H}_{\mathsf{Q}} \otimes \mathcal{H}_{\mathsf{R}},\mathcal{H}_{\mathsf{Q}})$.
- 5. The identity operation, $id^{B \leftarrow A} : X_A \mapsto \mathbb{1}_{B \leftarrow A} X_A \mathbb{1}_{A \leftarrow B}^{\dagger}$ is another simple example of isometric evolution.
- 6. Removing a system: $\rho_{\mathsf{QR}} \mapsto \mathrm{Tr}_{\mathsf{R}}\rho_{\mathsf{QR}}$.
- 7. Compositions of these, e.g. $\rho_{\mathsf{QR}} \mapsto \mathrm{Tr}_{\mathsf{R}} U_{\mathsf{RQ}} \rho_{\mathsf{Q}} \otimes \sigma_{\mathsf{R}} U_{\mathsf{RQ}}^{\dagger}$.

These are all examples of **operations**, that is, linear maps from one space of operators to another which are **completely positive** and **trace preserving**.

Definition 1. A linear map $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}} : \mathcal{L}(\mathcal{H}_{\mathsf{A}}) \to \mathcal{L}(\mathcal{H}_{\mathsf{B}})$ is

- 1. trace preserving (TP) if for all $X_{\mathsf{A}} \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}) \operatorname{Tr} \mathcal{M}^{\mathsf{B} \leftarrow \mathsf{A}} X_{\mathsf{A}} = \operatorname{Tr} X_{\mathsf{A}};$
- 2. positive if for all $X_{\mathsf{A}} \in \mathcal{L}(\mathcal{H}_{\mathsf{A}})$ such that $X_{\mathsf{A}} \geq 0$, $\mathcal{M}^{\mathsf{B} \leftarrow \mathsf{A}} X_{\mathsf{A}} \geq 0$;
- 3. completely positive (CP) if, for any system R, $\mathcal{M}^{B \leftarrow A} \otimes id^{R \leftarrow R}$ is positive.
- 4. An operation (or CPTP map) if it is completely positive and trace preserving.

\$ Give an example of a map which is positive but not completely positive.

Proposition 2. If $\mathcal{M}^{B \leftarrow A}$ and $\mathcal{N}^{C \leftarrow B}$ are positive then their composition $\mathcal{N}^{C \leftarrow B} \mathcal{M}^{B \leftarrow A}$ is positive. If they are CP then their composition is CP. If they are TP then their composition is TP. Consequently, compositions of operations are operations.

Proposition 3. Given maps $\mathcal{M}_{j}^{\mathsf{B}\leftarrow\mathsf{A}}$, let $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}} = \sum_{i} p_{i}\mathcal{M}_{j}^{\mathsf{B}\leftarrow\mathsf{A}}$ where $p_{i} \geq 0$ are real numbers. If the $\mathcal{M}_{j}^{\mathsf{B}\leftarrow\mathsf{A}}$ are positive then $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}$ is positive. If the $\mathcal{M}_{j}^{\mathsf{B}\leftarrow\mathsf{A}}$ are CP then $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}$ is CP.

Proposition 4. Maps of the form $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}: X_{\mathsf{A}} \mapsto ZX_{\mathsf{A}}Z^{\dagger}$, where $Z \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{B}})$, are CP.

Proof. If $X_{\mathsf{A}} \geq 0$, then $\langle \psi |_{\mathsf{B}} Z X_{\mathsf{A}} Z^{\dagger} | \psi \rangle_{\mathsf{B}} = \langle \psi' |_{\mathsf{A}} X_{\mathsf{A}} | \psi' \rangle_{\mathsf{A}} \geq 0$ where $|\psi' \rangle_{\mathsf{A}} = Z^{\dagger} | \psi \rangle_{\mathsf{B}}$ for all $|\psi\rangle_{\mathsf{B}}$, so the map is positive. Since $\mathcal{M}^{\mathsf{B} \leftarrow \mathsf{A}} \otimes \mathbf{id}^{\mathsf{R} \leftarrow \mathsf{R}} X_{\mathsf{A}\mathsf{R}} = (Z \otimes \mathbb{1}_{\mathsf{R}}) X_{\mathsf{A}\mathsf{R}} (Z \otimes \mathbb{1}_{\mathsf{R}})^{\dagger}$ is positive (by the same reasoning) for any R , $\mathcal{M}^{\mathsf{B} \leftarrow \mathsf{A}}$ is completely positive. \Box

Proposition 5. The following classes of maps are operations:

- 1. Adding a system in a fixed state, uncorrelated to the existing system: $\rho_{\mathsf{Q}} \mapsto \rho_{\mathsf{Q}} \otimes \sigma_{\mathsf{R}}$.
- 2. Isometric evolution: $\rho_{\mathsf{A}} \mapsto V \rho_{\mathsf{A}} V^{\dagger}$, where $V \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{B}})$ and $V^{\dagger} V = \mathbb{1}_{\mathsf{A}}$.
- 3. Removing a system: $\rho_{\mathsf{QR}} \mapsto \mathrm{Tr}_{\mathsf{R}}\rho_{\mathsf{QR}}$.

Proof. That (2) is CP is a special case of Proposition 4. By decomposing σ as a convex combination of pure states we see that (1) can be written as a positive linear combination of isometries, so complete positivity follows from Props. 4 and 3. Looking at the third characterisation of the partial trace in the previous handout, we see that its complete positivity also follows from Props. 4 and 3. Adding a system is clearly TP; that isometric evolutions are TP follows from cyclicity of trace and $V^{\dagger}V = \mathbb{1}_{Q}$. Partial trace is trace preserving simply because $\text{Tr}_{Q}\text{Tr}_{R} = \text{Tr}_{QR}$.

Definition 6. For any Hilbert space \mathcal{H}_A , we define a linear map $\operatorname{vec}_A : \mathcal{L}(\mathcal{H}_A, \mathbb{C}) \to \mathcal{H}_A$ by its action on the computational basis:

For
$$a \in \{0, \ldots, d_{\mathsf{A}} - 1\}$$
, $\operatorname{vec}_{\mathsf{A}} : \langle a |_{\mathsf{A}} \mapsto |a \rangle_{\mathsf{A}}$.

 $\operatorname{vec}_{\mathsf{A}}$ is a bijection, whose inverse is $\operatorname{vec}_{\mathsf{A}}^{-1} : |a\rangle_{\mathsf{A}} \mapsto \langle a|_{\mathsf{A}}$.

Note that $\operatorname{vec}_{\mathsf{A}}\langle\psi|_{\mathsf{A}} = |\psi\rangle_{\mathsf{A}}^*!$ If we apply $\operatorname{vec}_{\mathsf{A}}$ to $|i\rangle_{\mathsf{B}}\langle j|_{\mathsf{A}} \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{B}}) \cong \mathcal{H}_{\mathsf{B}} \otimes \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathbb{C})$, we get $\operatorname{vec}_{\mathsf{A}}|i\rangle_{\mathsf{B}}\langle j|_{\mathsf{A}} = |i\rangle_{\mathsf{B}} \otimes |j\rangle_{\mathsf{A}}$, and this extends by linearity to an isomorphism between $\mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{B}})$ and $\mathcal{H}_{\mathsf{B}} \otimes \mathcal{H}_{\mathsf{A}}$.

Given any two systems A and A' of equal dimension d let $|\Phi^+\rangle_{AA'} := \sum_{0 \le j < d} |j\rangle_A \otimes |j\rangle_{A'}$ and $\Phi^+_{AA'} := |\Phi^+\rangle\langle\Phi^+|_{AA'}$, and let $|\phi^+\rangle_{AA'} = |\Phi^+\rangle_{AA'}/\sqrt{d}$.

Definition 7. Given a linear map $\mathcal{M}^{B \leftarrow A} : \mathcal{L}(\mathcal{H}_A) \rightarrow \mathcal{L}(\mathcal{H}_B)$, its operator representation in $\mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$ is defined to be

$$\mathbf{id}^{\mathsf{A}\leftarrow\mathsf{A}'}\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}\Phi^{+}_{\mathsf{A}\mathsf{A}'} = \sum_{0\leq j,k< d_{\mathsf{A}}} (\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}|j\rangle\langle k|_{\mathsf{A}})_{\mathsf{B}}\otimes|j\rangle\langle k|_{\mathsf{A}}$$

where A' is a system with the same dimension as A (the $id^{A \leftarrow A'}$ is just for relabelling).

The action of $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}$ can be written in terms of its operator representation $M_{\mathsf{B}\mathsf{A}}$:

$$\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}X_{\mathsf{A}} = \mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}\left(\sum_{0\leq j,k< d_{\mathsf{A}}}|j\rangle\langle j|_{\mathsf{A}}X_{\mathsf{A}}|k\rangle\langle k|_{\mathsf{A}}\right)$$
(6.1)

$$= \sum_{0 \le j,k < d_{\mathsf{A}}} \left(\mathcal{M}^{\mathsf{B} \leftarrow \mathsf{A}} | j \rangle \langle k |_{\mathsf{A}} \right)_{\mathsf{B}} \operatorname{Tr} | j \rangle \langle k |_{\mathsf{A}} X_{\mathsf{A}}^{\mathrm{T}} = \operatorname{Tr}_{\mathsf{A}} M_{\mathsf{B}\mathsf{A}} \mathbb{1}_{\mathsf{B}} \otimes X_{\mathsf{A}}^{\mathrm{T}}$$
(6.2)

So, we have an isomorphism between the vector spaces $\mathcal{L}(\mathcal{L}(\mathcal{H}_A), \mathcal{L}(\mathcal{H}_B))$ and $\mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$ (sometimes called "Channel-state duality" or the "Choi-Jamiołkowski isomorphism").

Proposition 8. The map $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}: X_{\mathsf{A}} \mapsto ZX_{\mathsf{A}}Z^{\dagger}$, where $Z \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{B}})$, has the operator representation $|\zeta\rangle\langle\zeta|_{\mathsf{B}\mathsf{A}} \in \mathcal{L}(\mathcal{H}_{\mathsf{B}} \otimes \mathcal{H}_{\mathsf{A}})$ where $|\zeta\rangle_{\mathsf{B}\mathsf{A}} = \operatorname{vec}_{\mathsf{A}}Z$.

Proof. If
$$Z = \sum_{0 \le b < d_{\mathsf{B}}, 0 \le a < d_{\mathsf{A}}} z_{ba} |b\rangle_{\mathsf{B}} \langle a|_{\mathsf{A}}$$
, then $|\zeta\rangle_{\mathsf{B}\mathsf{A}} = \operatorname{vec}_{\mathsf{A}}(Z) = \sum_{b,a} z_{ba} |b\rangle_{\mathsf{B}} \otimes |a\rangle_{\mathsf{A}}$, and
 $\operatorname{Tr}_{\mathsf{A}}|\zeta\rangle\langle\zeta|_{\mathsf{B}\mathsf{A}}\mathbb{1}_{\mathsf{B}} \otimes X_{\mathsf{A}}^{\mathrm{T}} = \operatorname{Tr}_{\mathsf{A}}\left[\sum_{b,a,b',a'} z_{ba} z_{b'a'}^{*} |b\rangle\langle b'|_{\mathsf{B}} \otimes |a\rangle\langle a'|_{\mathsf{A}} X_{\mathsf{A}}^{\mathrm{T}}\right]$
 $= \sum_{b,a,b',a'} z_{ba} z_{b'a'}^{*} |b\rangle\langle b'|_{\mathsf{B}} \langle a|_{\mathsf{A}} X_{\mathsf{A}} |a'\rangle_{\mathsf{A}} = \left(\sum_{b,a} z_{ba} |b\rangle_{\mathsf{B}} \langle a|_{\mathsf{A}}\right) X_{\mathsf{A}} \left(\sum_{b',a'} z_{ba}^{*} |a'\rangle_{\mathsf{A}} \langle b'|_{\mathsf{B}}\right).$

Proposition 9 (Representations of CP maps.). Let M_{BA} be the operator representation of a map $\mathcal{M}^{B\leftarrow A}$. The following statements are equivalent:

- 1. $M_{\text{BA}} \ge 0$.
- 2. There is a set of maps $\{K_j \in \mathcal{L}(\mathcal{H}_A, \mathcal{H}_B) : j \in \{1, \ldots, n\}\}$ such that $\mathcal{M}^{\mathsf{B} \leftarrow \mathsf{A}} X_{\mathsf{A}} = \sum_{j=1}^n K_j X_{\mathsf{A}} K_j^{\dagger}$.
- 3. There is a system E and map $Z \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{E}} \otimes \mathcal{H}_{\mathsf{B}})$ such that $\mathcal{M}^{\mathsf{B} \leftarrow \mathsf{A}} X_{\mathsf{A}} = \mathrm{Tr}_{\mathsf{E}} Z X_{\mathsf{A}} Z^{\dagger}$.
- 4. $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}$ is completely positive.

Proof. For (1) \implies (2), we know that $M_{\mathsf{B}\mathsf{A}} = \sum_j |\kappa_j\rangle \langle \kappa_j|_{\mathsf{B}\mathsf{A}}$ for some $|\kappa_j\rangle_{\mathsf{B}\mathsf{A}} \in \mathcal{H}_{\mathsf{B}} \otimes \mathcal{H}_{\mathsf{A}}$ (from the eigendecomposition of $M_{\mathsf{B}\mathsf{A}}$, for instance). So, using Proposition 8,

$$\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}X_{\mathsf{A}} = \mathrm{Tr}_{\mathsf{A}}M_{\mathsf{B}\mathsf{A}}\mathbb{1}_{\mathsf{B}}\otimes X_{\mathsf{A}}^{\mathrm{T}} = \sum_{j}\mathrm{Tr}_{\mathsf{A}}|\kappa_{j}\rangle\!\langle\kappa_{j}|_{\mathsf{B}\mathsf{A}}\mathbb{1}_{\mathsf{B}}\otimes X_{\mathsf{A}}^{\mathrm{T}} = \sum_{j}K_{j}X_{\mathsf{A}}K_{j}^{\dagger}$$

where $K_j = \operatorname{vec}_{\mathsf{A}}^{-1} |\kappa_j\rangle_{\mathsf{B}\mathsf{A}}$. For (1) \Longrightarrow (3), we use that $M_{\mathsf{B}\mathsf{A}} = \operatorname{Tr}_{\mathsf{E}} |\zeta\rangle \langle \zeta|_{\mathsf{E}\mathsf{B}\mathsf{A}}$ for some $|\zeta\rangle_{\mathsf{E}\mathsf{B}\mathsf{A}} \in \mathcal{H}_{\mathsf{E}} \otimes \mathcal{H}_{\mathsf{B}} \otimes \mathcal{H}_{\mathsf{A}}$. Again using Proposition 8,

$$\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}X_{\mathsf{A}} = \operatorname{Tr}_{\mathsf{A}}M_{\mathsf{B}\mathsf{A}}\mathbb{1}_{\mathsf{B}}\otimes X_{\mathsf{A}}^{\mathrm{T}} = \operatorname{Tr}_{\mathsf{A}}(\operatorname{Tr}_{\mathsf{E}}|\zeta\rangle\langle\zeta|_{\mathsf{E}\mathsf{B}\mathsf{A}})\mathbb{1}_{\mathsf{B}}\otimes X_{\mathsf{A}}^{\mathrm{T}}$$
(6.3)

$$= \operatorname{Tr}_{\mathsf{E}} \operatorname{Tr}_{\mathsf{A}} |\zeta\rangle \langle \zeta |_{\mathsf{EBA}} \mathbb{1}_{\mathsf{EB}} \otimes X_{\mathsf{A}}^{\mathrm{T}} = \operatorname{Tr}_{\mathsf{E}} Z X_{\mathsf{A}} Z^{\dagger}$$

$$(6.4)$$

where $Z \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{E}} \otimes \mathcal{H}_{\mathsf{B}}) = \operatorname{vec}_{\mathsf{A}}^{-1} |\zeta\rangle_{\mathsf{EBA}}$.

(2) \implies (4) by Propositions 3 and 4. (3) \implies (4) follows from the fact that isometries and partial traces are CP and from the composition of CP maps being CP. That (4) \implies (1) is immediate from the definitions of complete positivity and the operator representation. \Box

An expression of the form $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}X_{\mathsf{A}} = \sum_{j} K_{j}X_{\mathsf{A}}K_{j}^{\dagger}$ is known as a **Kraus decompo**sition, and the K_{j} are called **Kraus operators**, for $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}$. An expression of the form $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}X_{\mathsf{A}} = \operatorname{Tr}_{\mathsf{E}}ZX_{\mathsf{A}}Z^{\dagger}$ is known as a **Stinespring representation** for $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}$.

Proposition 10. Given $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}} : X_{\mathsf{A}} \mapsto \sum_{j=1}^{n} K_j X_{\mathsf{A}} K_j^{\dagger} = \operatorname{Tr}_{\mathsf{E}} Z X_{\mathsf{A}} Z^{\dagger}$ where $K_j \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{B}})$ and $Z \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{B}} \otimes \mathcal{H}_{\mathsf{E}})$ then

$$\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}$$
 is trace preserving $\iff \sum_{j=1}^n K_j^{\dagger}K_j = \mathbb{1}_{\mathsf{A}} \iff Z$ is an isometry.

A Prove this.

Remark 11. [Stinespring representation of an operation] Propositions 9 and 10 tell us that any operation (CPTP map) $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}$ can be written $\mathcal{M}^{\mathsf{B}\leftarrow\mathsf{A}}X_{\mathsf{A}} = \mathrm{Tr}_{\mathsf{E}}VX_{\mathsf{A}}V^{\dagger}$ for some *isometry* $V \in \mathcal{L}(\mathcal{H}_{\mathsf{A}}, \mathcal{H}_{\mathsf{B}} \otimes \mathcal{H}_{\mathsf{E}}).$

Proposition 12. Any isometric evolution with $V \in \mathcal{L}(\mathcal{H}_A, \mathcal{H}_B)$ can be written

$$VX_{\mathsf{A}}V^{\dagger} = \mathrm{Tr}_{\mathsf{A}}U_{\mathsf{A}\mathsf{B}}X_{\mathsf{A}} \otimes |0\rangle\!\langle 0|_{\mathsf{B}}U_{\mathsf{A}\mathsf{B}}^{\dagger}$$

$$\tag{6.5}$$

where U_{AB} is a unitary in $\mathcal{L}(\mathcal{H}_{A} \otimes \mathcal{H}_{B})$.

Proof. Since V is isometry, it can be written $V = \sum_{0 \leq j < d_A} |v_j\rangle_B \langle j|_A$ where $\{|v_j\rangle_B : 0 \leq j < d_A\}$ is an orthonormal set. Therefore, $\{|0\rangle_A \otimes |v_j\rangle_B : 0 \leq j < d_A\}$ is an orthonormal set in $\mathcal{H}_A \otimes \mathcal{H}_B$. It is always possible to extend an orthonormal set to an orthonormal basis. Let $\mathfrak{B} = \{|0\rangle_A \otimes |v_j\rangle_B : 0 \leq j < d_A\} \cup \{|u_{kj}\rangle_{AB} : 1 \leq k < d_B, 0 \leq j < d_A\}$ be such an extension, and let $U_{AB} = \sum_{0 \leq j < d_A} |0\rangle_A \otimes |v_j\rangle_B \langle j|_A \otimes \langle 0|_B + \sum_{0 \leq j < d_A} \sum_{1 \leq k < d_B} |u_{kj}\rangle_{AB} \langle j|_A \otimes \langle k|_B$. This is a unitary operator in $\mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$ since it maps the computational basis for $\mathcal{H}_A \otimes \mathcal{H}_B$ to the orthonormal basis \mathfrak{B} . Because $U_{AB}|\psi\rangle_A \otimes |0\rangle_B = |0\rangle_A \otimes (V|\psi\rangle_A)_B$,

$$\mathrm{Tr}_{\mathsf{A}} U_{\mathsf{A}\mathsf{B}} |\psi\rangle\!\langle\psi|_{\mathsf{A}} \otimes |0\rangle\!\langle 0|_{\mathsf{B}} U_{\mathsf{A}\mathsf{B}}^{\dagger} = V |\psi\rangle\!\langle\psi|_{\mathsf{A}} V^{\dagger}$$

The result follows by linearity.

From the last two results it follows that

Theorem 13. Any operation can be implemented by adding a system in a pure state, unitary evolution of the composite system, and removing a system.