
6 Time evolution

6.1 Unitary evolution

The time evolution postulate of quantum mechanics states that, between measurements,
the time evolution of the state vector of a closed quantum system Q is given by a linear
differential equation called the Schrödinger equation: i~ ∂

∂t
|ψ(t)〉 = H|ψ(t)〉. Here, ~ is

the reduced Planck constant, we choose our units so that it’s equal to one. H ∈ Herm(HQ)
is the Hamiltonian - the observable corresponding to the total energy of a system. Solving
the Schrödinger equation (for a time independent H) we obtain, for any |ψ(t1)〉, |ψ(t2)〉 =
U(∆t)|ψ(t1)〉 where U(∆t) := exp(−iH∆t) is a unitary operator on HQ, and ∆t := t2 − t1.
We won’t talk about Hamiltonians again in this course. For us the important point is that the
time evolution of a closed system is unitary and, furthermore, for any unitary transformation
U we can find a Hamiltonian H and time interval ∆t such that U = exp(−iH∆t). We will
often imagine that we have sufficient control over systems to cause any unitary time evolution
we like (by intervening to change the Hamiltonian). Sometimes this is not unrealistic: e.g.
one can implement any unitary on a photon’s polarisation (an example of a qubit) by passing
the photon through various optical components.

Given a unitary time evolution U , we know how it acts on density operators corresponding
to pure states of the system: |ψ〉〈ψ| 7→ U |ψ〉〈ψ|U †. Since the time evolved ensemble average
of an ensemble of pure states should be the ensemble average of the time evolved pure state,
density operators evolve according to ρ 7→ UρU †.

6.2 Operations

It is not hard to come up with some realistic examples of non-unitary evolution.

1. Uncertainty about unitary evolution, e.g. with probability pi unitary Ui occurred. ρ 7→∑
i piUiρU

†
i (relevant to modelling noise in quantum computers, for example).

2. A PVM (with more than one possible outcome) is performed on the system (see ex-
ample sheet 1).

3. Adding a system: ρQ 7→ ρQ ⊗ σR.

4. Isometric evolution: ρA 7→ VB←AρAV
†
A←B where V ∈ L(HA,HB) is an isometry, i.e.

V †A←BVB←A = 1A. If σR = |σ〉〈σ|R then adding a system is an example of isometric
evolution with VQR←R =

∑
0≤i<dQ

|i〉Q ⊗ |σ〉R〈i|Q ∈ L(HQ ⊗HR,HQ).

5. The identity operation, idB←A : XA 7→ 1B←AXA1†A←B is another simple example of
isometric evolution.

6. Removing a system: ρQR 7→ TrRρQR.

7. Compositions of these, e.g. ρQR 7→ TrRURQρQ ⊗ σRU †RQ.
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These are all examples of operations, that is, linear maps from one space of operators
to another which are completely positive and trace preserving.

Definition 1. A linear map MB←A : L(HA)→ L(HB) is

1. trace preserving (TP) if for all XA ∈ L(HA) TrMB←AXA = TrXA;

2. positive if for all XA ∈ L(HA) such that XA ≥ 0, MB←AXA ≥ 0;

3. completely positive (CP) if, for any system R, MB←A ⊗ idR←R is positive.

4. An operation (or CPTP map) if it is completely positive and trace preserving.

♣♣ Give an example of a map which is positive but not completely positive.

Proposition 2. If MB←A and N C←B are positive then their composition N C←BMB←A is
positive. If they are CP then their composition is CP. If they are TP then their composition
is TP. Consequently, compositions of operations are operations.

Proposition 3. Given maps MB←A
j , let MB←A =

∑
i piMB←A

j where pi ≥ 0 are real num-
bers. If theMB←A

j are positive thenMB←A is positive. If theMB←A
j are CP thenMB←A is

CP.

Proposition 4. Maps of the form MB←A : XA 7→ ZXAZ
†, where Z ∈ L(HA,HB), are CP.

Proof. If XA ≥ 0, then 〈ψ|BZXAZ
†|ψ〉B = 〈ψ′|AXA|ψ′〉A ≥ 0 where |ψ′〉A = Z†|ψ〉B for all

|ψ〉B, so the map is positive. Since MB←A ⊗ idR←RXAR = (Z ⊗ 1R)XAR(Z ⊗ 1R)† is positive
(by the same reasoning) for any R, MB←A is completely positive.

Proposition 5. The following classes of maps are operations:

1. Adding a system in a fixed state, uncorrelated to the existing system: ρQ 7→ ρQ ⊗ σR.

2. Isometric evolution: ρA 7→ V ρAV
†, where V ∈ L(HA,HB) and V †V = 1A.

3. Removing a system: ρQR 7→ TrRρQR.

Proof. That (2) is CP is a special case of Proposition 4. By decomposing σ as a convex
combination of pure states we see that (1) can be written as a positive linear combination
of isometries, so complete positivity follows from Props. 4 and 3. Looking at the third char-
acterisation of the partial trace in the previous handout, we see that its complete positivity
also follows from Props. 4 and 3. Adding a system is clearly TP; that isometric evolutions
are TP follows from cyclicity of trace and V †V = 1Q. Partial trace is trace preserving simply
because TrQTrR = TrQR.

Definition 6. For any Hilbert space HA, we define a linear map vecA : L(HA,C)→ HA by
its action on the computational basis:

For a ∈ {0, . . . , dA − 1}, vecA : 〈a|A 7→ |a〉A.

vecA is a bijection, whose inverse is vec−1A : |a〉A 7→ 〈a|A.
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Note that vecA〈ψ|A = |ψ〉∗A! If we apply vecA to |i〉B〈j|A ∈ L(HA,HB) ∼= HB⊗L(HA,C),
we get vecA|i〉B〈j|A = |i〉B ⊗ |j〉A, and this extends by linearity to an isomorphism between
L(HA,HB) and HB ⊗HA.

Given any two systems A and A′ of equal dimension d let |Φ+〉AA′ :=
∑

0≤j<d |j〉A ⊗ |j〉A′

and Φ+
AA′ := |Φ+〉〈Φ+|AA′ , and let |φ+〉AA′ = |Φ+〉AA′/

√
d.

Definition 7. Given a linear mapMB←A : L(HA)→ L(HB), its operator representation
in L(HA ⊗HB) is defined to be

idA←A′MB←AΦ+
AA′ =

∑
0≤j,k<dA

(MB←A|j〉〈k|A)B ⊗ |j〉〈k|A

where A′ is a system with the same dimension as A (the idA←A′
is just for relabelling).

The action of MB←A can be written in terms of its operator representation MBA:

MB←AXA =MB←A

( ∑
0≤j,k<dA

|j〉〈j|AXA|k〉〈k|A

)
(6.1)

=
∑

0≤j,k<dA

(
MB←A|j〉〈k|A

)
B

Tr|j〉〈k|AXT
A = TrAMBA1B ⊗XT

A (6.2)

So, we have an isomorphism between the vector spaces L(L(HA),L(HB)) and L(HA ⊗HB)
(sometimes called “Channel-state duality” or the “Choi-Jamio lkowski isomorphism”).

Proposition 8. The map MB←A : XA 7→ ZXAZ
†, where Z ∈ L(HA,HB), has the operator

representation |ζ〉〈ζ|BA ∈ L(HB ⊗HA) where |ζ〉BA = vecAZ.

Proof. If Z =
∑

0≤b<dB,0≤a<dA
zba|b〉B〈a|A, then |ζ〉BA = vecA(Z) =

∑
b,a zba|b〉B ⊗ |a〉A, and

TrA|ζ〉〈ζ|BA1B ⊗XT
A = TrA

[∑
b,a,b′,a′ zbaz

∗
b′a′|b〉〈b′|B ⊗ |a〉〈a′|AXT

A

]
=
∑

b,a,b′,a′ zbaz
∗
b′a′|b〉〈b′|B〈a|AXA|a′〉A =

(∑
b,a zba|b〉B〈a|A

)
XA

(∑
b′,a′ z

∗
ba|a′〉A〈b′|B

)
.

Proposition 9 (Representations of CP maps.). Let MBA be the operator representation of
a map MB←A. The following statements are equivalent:

1. MBA ≥ 0.

2. There is a set of maps {Kj ∈ L(HA,HB) : j ∈ {1, . . . , n}} such that

MB←AXA =
∑n

j=1KjXAK
†
j .

3. There is a system E and map Z ∈ L(HA,HE⊗HB) such thatMB←AXA = TrEZXAZ
†.

4. MB←A is completely positive.

Proof. For (1) =⇒ (2), we know that MBA =
∑

j |κj〉〈κj|BA for some |κj〉BA ∈ HB ⊗ HA

(from the eigendecomposition of MBA, for instance). So, using Proposition 8,

MB←AXA = TrAMBA1B ⊗XT
A =

∑
j

TrA|κj〉〈κj|BA1B ⊗XT
A =

∑
j

KjXAK
†
j
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where Kj = vec−1A |κj〉BA. For (1) =⇒ (3), we use that MBA = TrE|ζ〉〈ζ|EBA for some
|ζ〉EBA ∈ HE ⊗HB ⊗HA. Again using Proposition 8,

MB←AXA =TrAMBA1B ⊗XT
A = TrA(TrE|ζ〉〈ζ|EBA)1B ⊗XT

A (6.3)

=TrETrA|ζ〉〈ζ|EBA1EB ⊗XT
A = TrEZXAZ

† (6.4)

where Z ∈ L(HA,HE ⊗HB) = vec−1A |ζ〉EBA.
(2) =⇒ (4) by Propositions 3 and 4. (3) =⇒ (4) follows from the fact that isometries

and partial traces are CP and from the composition of CP maps being CP. That (4) =⇒ (1)
is immediate from the definitions of complete positivity and the operator representation.

An expression of the form MB←AXA =
∑

j KjXAK
†
j is known as a Kraus decompo-

sition, and the Kj are called Kraus operators, for MB←A. An expression of the form
MB←AXA = TrEZXAZ

† is known as a Stinespring representation for MB←A.

Proposition 10. GivenMB←A : XA 7→
∑n

j=1KjXAK
†
j = TrEZXAZ

† whereKj ∈ L(HA,HB)
and Z ∈ L(HA,HB ⊗HE) then

MB←A is trace preserving ⇐⇒
∑n

j=1K
†
jKj = 1A ⇐⇒ Z is an isometry.

♣♣ Prove this.

Remark 11. [Stinespring representation of an operation] Propositions 9 and 10 tell us that
any operation (CPTP map)MB←A can be writtenMB←AXA = TrEV XAV

† for some isometry
V ∈ L(HA,HB ⊗HE).

Proposition 12. Any isometric evolution with V ∈ L(HA,HB) can be written

V XAV
† = TrAUABXA ⊗ |0〉〈0|BU †AB (6.5)

where UAB is a unitary in L(HA ⊗HB).

Proof. Since V is isometry, it can be written V =
∑

0≤j<dA
|vj〉B〈j|A where {|vj〉B : 0 ≤ j <

dA} is an orthonormal set. Therefore, {|0〉A ⊗ |vj〉B : 0 ≤ j < dA} is an orthonormal set in
HA ⊗HB. It is always possible to extend an orthonormal set to an orthonormal basis. Let
B = {|0〉A ⊗ |vj〉B : 0 ≤ j < dA} ∪ {|ukj〉AB : 1 ≤ k < dB, 0 ≤ j < dA} be such an extension,
and let UAB =

∑
0≤j<dA

|0〉A ⊗ |vj〉B〈j|A ⊗ 〈0|B +
∑

0≤j<dA

∑
1≤k<dB

|ukj〉AB〈j|A ⊗ 〈k|B. This
is a unitary operator in L(HA ⊗HB) since it maps the computational basis for HA ⊗HB to
the orthonormal basis B. Because UAB|ψ〉A ⊗ |0〉B = |0〉A ⊗ (V |ψ〉A)B,

TrAUAB|ψ〉〈ψ|A ⊗ |0〉〈0|BU †AB = V |ψ〉〈ψ|AV †.

The result follows by linearity.

From the last two results it follows that

Theorem 13. Any operation can be implemented by adding a system in a pure state,
unitary evolution of the composite system, and removing a system.
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