
9 Entanglement

When we have a composite system, the pure states of that system can not, in general, be
written as a tensor product of pure states of the subsystems. We say that such states are
entangled. When we talk about a bipartite system we mean a composite of two systems.
We have already seen an example of an entangled state of a bipartite system AB, namely
the state

|φ+〉AB = (|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)/
√

2

which was used in the quantum strategy for the CHSH game. We will see later that without
entanglement, Alice and Bob can do no better than the best classical strategy in any game like
the CHSH game. We will also study a number of other quite different uses for entanglement.

9.1 The Schmidt decomposition

In this section, we will prove that any pure state of a bipartite system can be written in
a certain standard form called a Schmidt decomposition. The Schmidt decomposition
makes certain features of pure states of bipartite systems apparent, such as the fact that
the states of the two parts have the same eigenvalues. It also lets us determine when two
pure states of a bipartite system can be reversibly transformed into one another by local
operations.

Note that we can think of a composite of any number of systems as being bipartite if we
specify a partition of its subsystems into two sets. Such a partition is called a bipartition.
For example, we might consider the bipartition A : BR of a composite system ABR.

Lemma 1. Suppose L ∈ L(HA,HB) and WA := L†L has eigendecomposition

WA =

dA∑
j=1

λj|αj〉〈αj|A where λ1 ≥ . . . ≥ λdA ,

and r := rank(WA). Then

L =
r∑

j=1

λ
1/2
j |φj〉B〈αj|A

for some orthonormal set {|φj〉B : 1 ≤ j ≤ r}.

Proof. From WA ≥ 0 and the ordering of the eigenvalues λj we know that λj > 0 for j ≤ r
and λj = 0 for j > r. Since WA is hermitian, {|αj〉A : 1 ≤ j ≤ dA} is an orthonormal basis

for HA. So, L =
∑dA

j=1 |φ̃j〉B〈αj|A where |φ̃j〉B = L|αj〉A and

〈φ̃k|φ̃j〉 = 〈αk|L†L|αj〉 = 〈αk|WA|αj〉 = λjδkj.

Letting |φj〉B := λ−1/2|φ̃j〉B for 1 ≤ j ≤ r defines an orthonormal set, and the result follows.
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Remark 2. Recall that vecB|ψ〉A〈φ|B = |ψ〉A ⊗ |φ〉∗B.

Theorem 3 (Schmidt decomposition). Any vector |ψ〉AB in the Hilbert space of a bipartite

system AB has a Schmidt decomposition |ψ〉AB =
∑r

j=1 λ
1/2
j |αj〉A ⊗ |βj〉B where:

1. The λj are real, strictly positive and decreasing λ1 ≥ . . . ≥ λr > 0.

2. {|αj〉A : 1 ≤ j ≤ r} and {|βj〉B : 1 ≤ j ≤ r)} are orthonormal sets;

3. r = rank(ψA) and
∑

1≤j≤r λj|αj〉〈αj|A is an eigendecomposition of ψA := TrB|ψ〉〈ψ|AB.

4. r = rank(ψB) and
∑

1≤j≤r λj|βj〉〈βj|B is an eigendecomposition of ψB := TrA|ψ〉〈ψ|AB.

The numbers λ
1/2
j are the (non-zero) Schmidt coefficients of |ψ〉AB, and r is the Schmidt

rank of |ψ〉AB. If |ψ〉AB is a state vector (i.e. a unit vector) then
∑

1≤j≤r λj = 1.

Proof. We expand |ψ〉AB in the computational basis,

|ψ〉AB =

dA−1∑
a=0

dB−1∑
b=0

xab|a〉A ⊗ |b〉B, and let L† := vec−1B |ψ〉AB =
∑
a,b

xab|a〉A〈b|B.

Using TrB|b〉〈b′|B = 〈b′|b〉 = δb′b = 〈b|b′〉, we have

ψA =TrB|ψ〉〈ψ|AB =
∑
a,b

∑
a′,b′

xabx
∗
a′b′ |a〉A〈a′|ATrB|b〉〈b′|B = L†L. (9.1)

Let ψA =
∑r

j=1 λj|αj〉〈αj|A be any eigendecomposition for ψA with eigenvalues λj in de-

creasing order. By Lemma 1 we have L =
∑r

j=1 λ
1/2
j |φj〉B〈αj|A, where r = rank(ψA) and

{|φj〉B : 0 ≤ j ≤ r} is an orthonormal set. Therefore, L† =
∑r

j=1 λ
1/2
j |αj〉A〈φj|B and

|ψ〉AB = vecAL
† =

r∑
j=1

λ
1/2
j |αj〉A ⊗ |βj〉B, where |βj〉B := |φj〉∗B.

Since complex conjugation of vectors preserves orthogonality and norm, we have established
points (1) to (3). (4) follows by taking the partial trace of |ψ〉〈ψ|AB over A and using the
orthonormality of the {|αj〉A}.

9.2 Mixed state entanglement

We say ρAB is a product state if it is a tensor product of local states ρAB = αA ⊗ βB. A
pure state ρAB = |ψ〉〈ψ|AB is a product state iff the following equivalent conditions hold

• Its state vector1 |ψ〉AB is a product vector i.e. |ψ〉AB = |α〉A ⊗ |β〉B;

• Its state vector has Schmidt rank one;

• Both of its marginal states are pure.

1Only unique up to global phase, but the conditions given are independent of this.
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Among states which are not pure, however, we regard not only product states as unentangled,
but rather any convex combination of product states.

Definition 4. We say an operator MAB ∈ L(HA ⊗ HB) is separable (with respect to the
A : B bipartition) iff it can be written

MAB =
∑
x

F (x)A ⊗G(x)B, where

∀x :F (x)A ∈ L(HA), F (x)A ≥ 0, G(x)B ∈ L(HB), G(x)B ≥ 0.

We denote the set of all such operators by sep(A : B). Note that a separable operator is
necessarily positive.

A state (density operator) ρAB of AB belongs to sep(A : B) if and only if it is a convex
combination of product states, that is,

ρAB =
∑
x

PX(x)α(x)A ⊗ β(x)B (9.2)

where PX is a probability distribution and the α(x)A and β(x)B are density operators. Any
state which is not separable, we call entangled.

If Alice and Bob both have access to a random variable X with distribution PX , and
Alice prepares A in the state α(X)A and Bob prepares B in the state β(X)B, then the state
of AB will be the one given in (9.2).

9.2.1 A necessary condition for separability: PPT

Deciding whether a given state is separable or not is a computationally hard problem.2

However, there is a simple, efficiently checkable necessary condition for separability, based
on the fact that the transpose map tA←A is positive but not completely positive.

Definition 5. We say that an operator MAB ∈ L(HA ⊗HB) is PPT (positive-partial trans-
pose) with respect to the A : B bipartition if tA←AMAB ≥ 0. We denote the set of positive
operators which are also PPT by ppt(A : B).

Remark 6. Since taking the (total) transpose of an operator does not change its eigenvalues,
tA←AMAB ≥ 0 iff tAB←ABtA←AMAB = tB←BMAB ≥ 0. So, we could take the transpose on the
B system rather than the A system in the definition and it would be equivalent. It is also
easy to check that taking the transpose with respect to a different orthonormal basis doesn’t
change which states are PPT.

Proposition 7. sep(A : B) ⊆ ppt(A : B). That is, an operator which is separable with
respect to a given bipartition is also PPT with respect to that bipartition.

Proof. MAB is separable iff it can be written M =
∑

j F (j)A ⊗ G(j)B where F (j)A ≥
0, G(j)B ≥ 0 for all j. Therefore, F (j)TA ≥ 0 for all j and tA←AMAB =

∑
j F (j)TA ⊗G(j)B ≥

0.

Remark 8. It can be shown that if dA + dB ≤ 5 then sep(A : B) = ppt(A : B).

2NP-hard, see e.g. http://arxiv.org/abs/0810.4507
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9.3 Some questions for example class 2

♣♣Suppose we know that a qubit is either in the pure state ψ0 = |ψ0〉〈ψ0| where |ψ0〉 :=
cos(θ)|0〉 + sin(θ)|1〉 or in the pure state ψ1 = |ψ1〉〈ψ1| where |ψ1〉 := cos(θ)|0〉 − sin(θ)|1〉
(for some given θ ∈ [0, π/4]) but we are completely unsure which it is, i.e. the state is ψX

where X takes values in {0, 1} and, PX(0) = PX(1) = 1/2.

1. If we measure a POVM with result X̂ taking values in {0, 1}, what is the maximum
success probability Pr(X̂ = X)?

2. Argue that the maximum success probability in the previous part depends on the states
only through the absolute value of their inner product |〈ψ0|ψ1〉|.

3. Now suppose we are given n qubits, either all prepared in state ψ0 or all prepared in
state ψ1, so the state is ψ⊗nX . If we measure a POVM on the whole n qubit system with

result X̂ taking values in {0, 1}, what is the maximum success probability Pr(X̂ = X)?

4. Now (for the original n = 1 case) suppose that we perform a POVM whose result Y
takes values in {0, 1, ?}, where the outcome ? means that we don’t know which state
the system is in.

(a) Give elements E(0), E(1) and E(?) for the POVM such that

Pr(Y = 0|X = 1) = Pr(Y = 1|X = 0) = 0

(i.e. the measurement never gets the wrong state) and

Pr(?) = cos(2θ).

(Hint: Start by considering the which forms of E(0) and E(1) are allowed by the
constraints.) Try also to show that this the smallest possible value of Pr(?).

♣♣ Consider a game similar to the CHSH game where a referee sends a question S to
Alice and a question T to Bob, and Alice and Bob respond to the referee with answers X
and Y respectively. As in the CHSH game the questions and answers were all bits, but
now we make no assumption on the sets AS, AT , AX , AY except that they are all finite.
There is some function f : AS ×AT ×AX ×AY → {0, 1} and the players win the game iff
f(S, T,X, Y ) = 1.

Suppose that, as in the quantum strategy for CHSH, Alice has a system A and Bob has
a system B; For each s ∈ AS there is a POVM Es : AX → L(HA) and X is the result of
Alice measuring ES on A; for each t ∈ AT there is a POVM Ft : AY → L(HB), and Y is
the result of Bob measuring FT on B. We make no assumption on the dimensions dA and dB
except that they are finite.

Show that, if the state of ρAB prior to the measurements is separable, then there is a local
hidden variables model for how X and Y depend on S and T , and therefore, the strategy
will be no better than the best deterministic strategy.
♣♣ Let dA = dB = 2 and let ρAB be the state whose matrix in the computational basis is

ρAB =
1
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
1 1 0 0
1 2 1 0
0 1 1 0
0 0 0 1

 .

Is ρAB separable?
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